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Various integrals containing either long-range terms or trigonometric functions arise 
in low-energy electron or positron-atom scattering problems. Analytical evaluation of 
such integrals becomes very difficult. Expressions are developed involving one final 
radial numerical integration, the other integrations being calculated analytically. These 
latter expressions may also be used in the optical potential method for scattering 
problems. The expressions are developed from expanding rC in terms of Legendre 
polynomials. Using integrals for which analytical results are readily calculated for 
comparison purposes, it is found that at least ten significant figures are obtained from 
a 25-point Gauss-Laguerre quadrature. 

INTRODUCTION 

In the study of low-energy electron or positron-atom scattering problems, 
integrals of the form 

I = (47~)-~ Sf(r3) x dT (1) 

are encountered. r, denotes the magnitude of the projectile coordinate, r, , and 
J ... dr represents integration over the coordinates of the projectile and the target 
electrons. x may contain factors of the form [l, 2, 31 

x = WI) &dr2) F3(r3) ri3rCd3 (2) 
with 

E;,(r) = rmv-Qr. (3) 

rl and r2 denote the magnitudes of the vector electron coordinates rl and r2, 
respectively, and rij = / ri - rj I. Here m, , v, p, and X are integers >, -1 and 
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01, > 0. The function f(rJ may contain [ 1, 2, 31 either so-called long-range terms 
of the form 

f(r3) = (1 - e-6rs)3/r,2, (44 

or trigonometric terms such as 

f(r3) = (sin kr,)/kr, , (4b) 
and 

f(r3) = (~0s kr3W3 , (4c) 

which arise from using variational methods in scattering problems at nonzero 
projectile energy. 

Perkins [4] has developed explicit expressions for evaluating Eq. (1) when x is 
given by Eq. (2) and f(r3) = 1. However, when f(r3) is given by, for example, 
Eq. (4), the analytic expressions of Perkins [4] become extremely difficult to 
evaluate. It is the purpose of this paper to develop analytic expressions for 

Y(r3) = (4~))~ f MrJ F2(r2) d3rC3C2 drl dT2 dQ8 , (5) 

where drl and dr2 are volume elements associated with rl and r, , respectively, 
and dQ,3 denotes the angular integration over the projectile vector r3 . I (Eq. (1)) 
is then given by 

I = /om.f(r3) F3k3> Y(r3) r3’ dr3 , 

which can be evaluated numerically using, for example, Gaussian quadrature. 
In some studies of collision problems, functions of the form of Y(r3) itself 

are needed to construct an optical potential. For example, in evaluating 
chdr, 3 2 r ) 1 H - E 1 x), where &(rl , r2) is the Hyllerras-type ground-state 
helium function, H and E are the Hamiltonian and energy of the system, respec- 
tively, an integration like Eq. (5) has to be carried out. 

Analytical Integrals 

Various integrals which will be used and which may be evaluated analytically 
are given below. Some of these integrals have been called either auxiliary or basic 
functions by other authors [S, 61. 

A(Fa , N) = jam Fa(r) rN dr, (7) 

13(Fa , N, x) = fox F,(r) rN dr, (8) 
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D(Fa , N, x) = jm F,(r) rN dr, 
x (9) 

E(Fa , M; Fb , N) = jOm Fa(r) rM dr jm F*(t) tN dt, 
r 

(10) 

G(Fa , M; Fb , N; x) = jOx F,(r) rM dr j’ Fb(t) tN dt, 
0 

(11) 

H(Fa , M; Fb , N; x) = jox F,(r) rM dr j OD Fb(t) tN dt, 
5. 

(12) 

P(F, , M, Fb , N, x) = jam F,(r) rM dr j’ Fb(t) tN dt, 
0 

Q(Fa , M; Fb , N; x) = jsrn I;a(r) rM dr jm Fb(t) tN dt. 
9. 

(13) 

(14) 

General Expressions 

riz may be expanded, using Perkins’ notation [4], in the form 

k-0 
(15) 

where s12 , g,, denote the smaller and greater of r, and rz , respectively; the P’s are 
the Legendre polynomials, 8,, being the angle between rl and t2 ; the C’s are the 
same coefficients as those derived by Perkins [4]. If v is even, L, = v/2, 
L2 = v/2 - q; if v is odd, L, = co, L2 = [(v + 1)/2] = integral part of (v + 1)/2. 
After expressing r& , 13 r’ and ri2 in the form of Eq. (15) and performing the angular 
integrations, Eq. (5) becomes 

[h+d 121 [(u+l) 121 [b-tl) /21 

y@S> = 5 (2q f lje2 iz c~.%i c c&&3 c cv&k 
G-0 j-0 k--O 

X 
s 

u+2k v--P-2k u-q-23 a+23 ~+2t A--n-2i 
812 a2 a3 s13 s23 g23 

2 2 
rl r2 F&3 F2Cr2> dr, dr2 . (16) 

The r, integration may be divided into three intervals: 0 to s,, ; s23 to g,, ; 
g,, to co; while the r, integration may be divided into two intervals: 0 to r, ; 
r, to co. 
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Using this integration scheme, Eq. (16) becomes 

[(A+l)/zl r(o+1)/21 Ib+1)/21 

y(r3 = 5 C2!l + l>-” C cA,*,i C ce7,j 1 
Cl-0 LO j=O k=O 

s 

*3 
,,;+v+2i-2k F2(r2) 

0 

dr, I” rf+2us-2i+2kFl(r~ dr, 
0 

+ ,.;+rr-2q-2i-2j 

s 

r3 
,.;f2c+2&2k F,(r,) 

0 

dr, IT” rf+y+2j-2kFl(rl) dr, 
72 

s 

r3 
+ ,.;-2ii2.i ,.;+2o+21+2k 

0 
F2(r2) dr2 s O” rf+“+“-2a-2i-2kFl(r3 dv, 

r3 

+ ,.;+%2i 

s 

- r;+h+V-2Q-2i-2kF2(r2) dr2 1’” r;+2’J+ti+2kFl(r3 d,., 

3 0 

+ rF+2i+2i 

s 

m r22+A+V-2Q-2e’-2kF2(r2) dr2 j” rf+“-2i+2kr;(r~ drl 

*3 % 

+ r32a+2i+2j s w rl+A-2i+2kF2(r2) dr, s a, 2+U+v--2Q--2j--2kF r, dr3 dh] . (17) 
Q 72 

For large values of q, the power of rl in the last integral of Eq. (17) becomes 
negative. To avoid this difficulty, the following identity is used to change the 
order of integration between r, and r, : 

s ’ W2) dr2 f b &3 drl = I* dr,) dr, jr1 h(rd dr2 s (18) 
a +2 a a 

Using the functions defined in Eqs. (7)-(14) together with Eq. (18), Eq. (5) 
becomes 

[b+1)/21 [(w+1)/21 C(v+1)/21 

WJ = 2 (2q + I>-" C CW C Cd C 
q=o i=O j=O k=O 

x c”,g,k[r;+rr-24-2i-2i (G(F2,2+v+2i-2k;Fl,2+2q+2j+2k;r3) 

+G(Fl,2+v+2j-2k;F2,2+2q+2i+2k;r3)) 

+ r~-2i’2iB(F2 ,2 + 2q + 2i + 2k; rs) 

x Wl, 2 + p + v - 2q - 2j - 2k; r3) 

+ ri+2t-2iB(Fl ,2 + 2q + 2j + 2k; r3) 
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x D(F, ,2 + X + v - 24 - 2i - 2k; r3) 

+ rp+2i+2i{D(F2, 2 + h + v - 2q - 2i - 2k; r3) 

x D(Fl ,2 + p - 2j + 2k; r3> 

- Q(F2, 2 + h + v - 2q - 2i - 2k; Fl ,2 + ,LL - 2j + 2k; r3) 

+ D(F, ,2 + p + v - 2q - 2j - 2k; t3) D(F, ,2 + h - 2i + 2k; r3) 

- Q(Fl ,2 + p + v - 2q - 2j - 2k; F2 ,2 + h - 2i + 2k; r&)1. (19) 

Special Cases 

The general expression for Y(r,) given in Eq. (19) may be simplified, as in the 
work of Perkins [4], in the special cases where any of the integers A, v,t~ are even. 
These cases will be given here. 

0 v is even. 

VI2 [h+1) izl r(P+1)/21 v/z--Q 

w-3) = c (3 + w2 c GILi c G,P,J c 
Cl=0 i=O * j=o k=O 

x Cv,,,k[r3 A+“-2q-2i-2’B(Fs ,2 + 2q + 2i + 2k; r3) 

x B(F, ,2 + v + 2j - 2k; r3) + r~+2’-2iB(F2, 2 + 2q + 2i + 2k; r3) 

x D(F, ,2 + p + v - 2q - 2.j - 2k; r3) + rlt2i-2’ 

x B(Fl ,2 + 2q + 2j + 2k; r,) D(F2, 2 + h + v - 2q - 2i - 2k; r3) 

+ r~+2i+2jD(F2, 2 + h + v - 2q - 2i - 2k; r3) 

x D(F, ,2 + P - 2j + 2k; r&l. (20) 

(ii) P is even. 

ui2 r(A+l) 121 u/2-0 f(v+1) 121 

Y(r3) = C (29 + I)-’ C CL,,, C cuP*si C 
q=o i=O GO k=O 

x Cv.q.k[r3 A+"--2q-2i-2i{~(F2, 2 + v + 2i - 2k; Fl ,2 + 2q + 2j + 2k; r3) 

+ H(F, ,2 + 2q + 2i + 2k; FL, 2 + v -I- 2.i - 2k; rd) 

+ r3 u+2a-2'{P(F9 ,2 + h + v - 2q - 2i - 2k; Fl ,2 + 2q -t- 2.j -t- 2k; r3) 

+ Q(F~ ,2 + h - 2i + 2k; Fl ,2 + v + 2i - 2k; r3))1. (21) 
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(iii) h is even. Due to the symmetry of the two electrons at rl and r2, respec- 
tively, the expression for Y(r,) in this case is given by Eq. (21) interchanging FI 
with Fz and p with X. 

(iv) p and v are both even. 

minb/2.u12) [h+1)121 u/2-n viz--4 

W3) = qz 6% + I>-" C CW C Cud C 
i=O j=O k=O 

x &?,kb2 h+p-2a-2i-2iB(F2 ,2 + 2q + 2i + 2k; r3) A(Fl ,2 + v + 2j - 2k) 

+ r3 u+2i-2’D(F2 ,2 + h + v - 2q - 2i - 2k; r3) A(F, ,2 + 2q + 2j + 2k)]. 
(22) 

Where min(v/2, CL/~) denotes the minimum of v/2 and ~12. 

(v) X and v are both even. Again, due to symmetry of the two electrons at 
rl and r2 , respectively, the expression for Y(r,) in this case is given by Eq. (22) 
interchanging Fl with F2 and p with X. 

(vi) h and p are both even. 

min(ui2Ai2) A/2-0 lA12-Q [(v+1) 121 

Y(r3) = ,z (2q + 1)-2 C CU,~ C G.*.j C 
i=O GO k=O 

x G,,kr3 h+“-2q-2i-2i[E(Fl, 2 + 2q + 2j + 2k; F2 ,2 + v + 2i - 2k) 

+ E(F2, 2 + 2q + 2i + 2k; Fl ,2 + v + 2j - 2k)]. 

(vii) X, p and v are all even. 

minhlz.u/2,v/2) A 12-n u/2--0 v12--9 

Y(r,) = C m + I>-" c G,Q,i c Cu,a.f 
4=0 i=O j=O 

go cm.k 

(23) 

x r3 h+“-2g-2i-2’A(F2 ,2 + v + 2i - 2k) A(Fl ,2 + 2q + 2j + 2k). (24) 

Evaluation of Analytical Integrals 

The analytical determination of A(F,, N)is straightforward. Since E(F,, M; Fb, N> 
appears in Eq. (23) with M and N both 20, it may be expressed in terms of the 
integrals defined in Eqs. (7) and (9). Similarly the integrals listed in Eqs. (ll)-(14) 
may be expressed in terms of the integrals defined in Eqs. (7)-(9). 

B(Fa , N, X) may be evaluated by means of a recursion relation [5, 61. However, 
round-off errors become severe in using the recursion relation for certain values 
of x and another method of evaluation must be used [5, 61. When the power of r 
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is positive, a recursion relation for D(Fa , N; X) may be used throughout the entire 
range of x without significant round-off errors accumulating [6]. For negative 
powers of Y, D(Fa , N; X) may be related to the exponential integral through a 
recursion relation [7]. Cody and Thacher [8] have developed accurate rational 
Chebyshev approximations for the exponential integral. It has been found [7] 
that the recursion relation for negative powers of r may result in serious round-off 
errors accumulating for certain values of both x and N. In such cases, alternative 
procedures have been developed [7,9]. However, in the present work, it was found 
that the contributions of such terms to the total integral, I, were insignificant. 

TABLE I 

Sample of Integrals Used to Test the Accuracy of the Various Formulae 

Values of I using Values of Z using 
2%point Gauss- expressions of 

a1 % aa ml m, ma x P lJ Laguerre quadrature Perkins [4] 

5.72 4.26 4.26 0 0 0 -1 1 1 .690670359335 E - 05 .690670359371 E - 05 

5.72 4.26 4.26 2 1 1 1 1 1 .339516939432 E - 05 .339516939432 E - 05 

5.72 5.72 2.80 2 1 1 3 3 3 .103057681192 E - 02 .103057681192 E - 02 

4.26 4.26 5.72 2 1 1 5 5 5 .197989903162 E + 00 .197989903162 E + 00 

5.72 4.26 4.26 0 1 1 0 1 1 .433603504031 E - 05 .433603504031 E - 05 

2.80 4.26 5.72 1 0 2 3 0 -1 .187402878185 E - 04 .187402878185 E - 04 

2.80 4.26 5.72 2 1 0 1 -1 2 .844226266354 E - 04 .844226266354 E - 04 

2.80 5.72 5.72 2 0 0 0 0 -1 .108435060844 E - 04 .I08435060844 E - 04 

5.72 5.72 2.80 0 0 2 0 -1 2 .774239416524 E - 05 .774239416441 E - 05 

2.80 4.26 5.72 0 2 1 -1 2 0 .168795448669 E - 04 .168795448669 E - 04 

5.72 5.72 2.80 0 0 2 0 0 0 .159259337056 E - 04 .159259337056 E - 04 

The accuracy of the formulae presented in this paper were tested using various 
integrals for which the analytical expressions of Perkins [4] could be readily used. 
It was found that a 32-point Gauss-Laguerre quadrature gave at least 13 significant 
figures in the final answers for all cases except when v, p and h were all odd integers. 
Using a 25point quadrature resulted in an accuracy of at least ten significant 
figures, while a 16-point quadrature gave at least six significant figures. For the 
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TABLE II 

Convergence Behavior of Typical Integrals When Y, p, h Are All Odd 

% % % ml m3 m3 x P ” 
5.72 4.26 4.26 0 0 0 -1 1 1 

J, using 25-point J, using the expressions 
4 Gauss-Laguerre quadrature of Perkins [4] 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

.681417026290 E - 05 

.009160399879 E - 05 

&MO86633829 E - 05 

.OOOOO5397857 E - 05 

.OOOOOO705323 E - 05 

.OOOOOO140240 E - 05 

.OOOOOOO36673 E - 05 

.OOOOOOO11640 E - 05 

.000000004270 E - 05 

.000000001752 E - 05 

.000000000786 E - 05 

.OOOOOOOOO379 E - 05 

.000000000195 E - 05 

.000000000105 E - 05 

.000000000059 E - 05 

.000000000035 E - 05 

.000000000023 E - 05 

.OOOCKH@1322 E - 05 

.000000002742 E - 05 

-.0OOOOOO01180E - 05 

.681417026289 E - 05 

.009160399887 E - 05 

.000086633821 E - 05 

.OOOOO5397857 E - 05 

.OOOOOO705324 E - 05 

.OOOOOO140240 E - 05 

.OOOOOOO36673 E - 05 

.OOOOOOO11640 E - 05 

.000000004270 E - 05 

.OoooOOOO1752 E - 05 

.000000000786 E - 05 

.000000000379 E - 05 

MKMOOOO0195 E - 05 

.000000000105 E - 05 

.000000000059 E - 05 

XXI0000000035 E - 05 

.OOOOOOOOOO21 E - 05 

.000000000013 E - 05 

.000000000008 E - 05 

.OOOOOOOOOO06 E - 05 

.000000000004 E - 05 

.000000000003E-05 

.000000000002 E - 05 

.000000000001 E - 05 

.0-l E - 05 

.OOOOOOOOOOO1 E - 05 

Table continued 
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TABLE II (confinued) 

a1 % % ml m2 ma h P lJ 

4.26 4.26 5.12 2 1 1 5 5 5 

J, using 25-point J, using the expressions 
4 Gauss-Laguerre quadrature of Perkins [4] 

0 .280791345363E+ 00 .280791345363E+ 00 

1 -.084479705809E+ 00 -.084479705809E+ 00 

2 .001678931336 E + 00 .001678931336 E + 00 

3 -.000000667559E+ 00 -.000000667559E+ 00 

4 -.0OOOOOOOO169E+ 00 -.OOOOOO000169E+ 00 

5 -..000000000001 E + 00 -.000000000001E+ 00 

cases where the integers v, p, and h are all odd, the 32-point, 25-point, and 16-point 
quadratures gave an accuracy of at least ten, ten, and nine significant figures, 
respectively. A 40-point quadrature gave the same results as the 32-point quadra- 
ture. A sample table of test integrals is given in Table I where the numbers are 
rounded off to 12 significant figures. Here the results using a 25-point quadrature 
are compared with those obtained using the expressions of Perkins [4]. Since the 
case where the integers v, p, and h are all odd involve an infinite sum over the 
variable q, the individual contributions for each value of q to the final answer are 
given in Table II for two cases. When q is large, differencing errors in using Eq. (19) 
completely dominate the contributions to the integral I. This occurs in one of the 
examples in Table II when q is greater than 16. 

All the computations were performed using the Control Data Corporation 
Cyber 73/14 computer system at the University of Western Ontario. This computer 
has a 60-bit word length, giving 14 significant figures for single precision arithmetic. 
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